3,857 research outputs found

    Variable stiffness polymeric damper

    Get PDF
    Shock and vibration damping device using temperature sensitive solid amorphous polymer

    Concept for design of variable stiffness damper

    Get PDF
    Damping mechanism, containing polymeric-like materials is applicable to a wide range of shock and vibration. The polymeric-like material changes from a relatively stiff material to a relatively soft, rubbery material in the region of their glass transition temperatures. The energy absorption characteristics and stiffness are controllable with temperature

    Time-temperature-strain rate equivalence for various engineering thermoplastics

    Get PDF
    Mechanical behavior and time temperature strain rate equivalence for acetal, polycarbonate, polyamide, and fluorocarbo

    Mechanical properties of plastics predetermined by empirical method

    Get PDF
    To predetermine the mechanical properties of rigid plastics as a function of plasticizer content and composition, a set of equations has been empirically derived. These relate strain rate, yield stress, temperature, and weight fraction of the plasticizer

    One, two, or three stars? An investigation of an unusual eclipsing binary candidate undergoing dramatic period changes

    Get PDF
    We report our investigation of 1SWASP J234401.81-212229.1, a variable with a 18 461.6 s period. After identification in a 2011 search of the SuperWASP archive for main-sequence eclipsing binary candidates near the distribution's short-period limit of ~0.20 d, it was measured to be undergoing rapid period decrease in our earlier work, though later observations supported a cyclic variation in period length. Spectroscopic data obtained in 2012 with the Southern African Large Telescope did not, however, support the interpretation of the object as a normal eclipsing binary. Here, we consider three possible explanations consistent with the data: a single-star oblique rotator model in which variability results from stable cool spots on opposite magnetic poles; a two-star model in which the secondary is a brown dwarf; and a three-star model involving a low-mass eclipsing binary in a hierarchical triple system. We conclude that the latter is the most likely model

    Measuring Seaport Performance and Congestion in the Republic of Korea

    Get PDF
    Companies continue to globalize their supply chain operations increasing cargo traffic and creating excessive shipping demand on ports across the globe resulting in port congestion. This increased congestion impacts USTRANSCOM’s cargo movement operations, which compete for use of the same port resources. While the DoD has organic transportation capabilities, most of the cargo is moved by commercial ocean liners. It is, therefore, necessary to understand port operations, identify excess capacity, and exploit it to avoid congestion at ports. The purpose of this study is to identify peak and idle periods by evaluating the comparative performance of seaports using data envelopment analysis (DEA)

    The Arches cluster revisited: I. Data presentation and stellar census

    Get PDF
    Context. Located within the central region of the Galaxy, the Arches cluster appears to be one of the youngest, densest and most massive stellar aggregates within the Milky Way. As such it has the potential to be a uniquely instructive laboratory for the study of star formation in extreme environments and the physics of very massive stars. Aims. To realise this possibility, the fundamental physical properties of both cluster and constituent stars need to be robustly determined; tasks we attempt here. Methods. In order to accomplish these goals we provide and analyse new multi-epoch near-IR spectroscopic data obtained with the VLT/SINFONI and photometry from the HST/WFC3. We are able to stack multiple epochs of spectroscopy for individual stars in order to obtain the deepest view of the cluster members ever obtained. Results. We present spectral classifications for 88 cluster members, all of which are WNLh or O stars: a factor of three increase over previous studies. We find no further examples of Wolf-Rayet stars within the cluster; importantly no H-free examples were identified. The smooth and continuous progression in spectral morphologies from O super-/hypergiants through to the WNLh cohort implies a direct evolutionary connection. We identify candidate giant and main sequence O stars spectroscopically for the first time. No products of binary evolution may be unambiguously identified despite the presence of massive binaries within the Arches. Conclusions. Notwithstanding difficulties imposed by the highly uncertain (differential) reddening to the Arches, we infer a main sequence/luminosity class V turn-off mass of ∼ 30 − 38M⊙ via the distribution of spectral types. Analysis of the eclipsing binary F2 suggests current masses of ∼ 80M⊙ and ∼ 60M⊙ for the WNLh and O hypergiant cohorts, respectively; we conclude that all classified stars have masses > 20M⊙. An age of ∼ 2.0 − 3.3Myr is suggested by the turn-off between ∼O4-5 V; constraints imposed by the supergiant population and the lack of H-free WRs are consistent with this estimate. While the absence of highly evolved WC stars strongly argues against the prior occurrence of SNe within the Arches, the derived age does accommodate such events for exceptionally massive stars. Further progress will require quantitative analysis of multiple individual cluster members in addition to further spectroscopic observations to better constrain the binary and main sequence populations; nevertheless it is abundantly clear that the Arches offers an unprecedented insight into the formation, evolution and death of the most massive stars Nature allows to form

    Effects of Particle Shape on Growth Dynamics at Edges of Evaporating Colloidal Drops

    Full text link
    We study the influence of particle shape on growth processes at the edges of evaporating drops. Aqueous suspensions of colloidal particles evaporate on glass slides, and convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow inhomogeneously from the edge in two-dimensions, and the deposition front, or growth line, varies spatio-temporally. Measurements of the fluctuations of the deposition front during evaporation enable us to identify distinct growth processes that depend strongly on particle shape. Sphere deposition exhibits a classic Poisson like growth process; deposition of slightly anisotropic particles, however, belongs to the Kardar-Parisi-Zhang (KPZ) universality class, and deposition of highly anisotropic ellipsoids appears to belong to a third universality class, characterized by KPZ fluctuations in the presence of quenched disorder

    The Arches cluster revisited: II. A massive eclipsing spectroscopic binary in the Arches cluster

    Get PDF
    We have carried out a spectroscopic variability survey of some of the most massive stars in the Arches cluster, using K-band observations obtained with SINFONI on the VLT. One target, F2, exhibits substantial changes in radial velocity; in combination with new KMOS and archival SINFONI spectra, its primary component is found to undergo radial velocity variation with a period of 10.483+/-0.002 d and an amplitude of ~350 km/s-1. A secondary radial velocity curve is also marginally detectable. We reanalyse archival NAOS-CONICA photometric survey data in combination with our radial velocity results to confirm this object as an eclipsing SB2 system, and the first binary identified in the Arches. We model it as consisting of an 82+/-12 M⊙ WN8-9h primary and a 60+/-8 M⊙ O5-6 Ia+ secondary, and as having a slightly eccentric orbit, implying an evolutionary stage prior to strong binary interaction. As one of four X-ray bright Arches sources previously proposed as colliding-wind massive binaries, it may be only the first of several binaries to be discovered in this cluster, presenting potential challenges to recent models for the Arches' age and composition. It also appears to be one of the most massive binaries detected to date; the primary's calculated initial mass of >~120 M⊙ would arguably make this the most massive binary known in the Galaxy
    • …
    corecore